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Abstract
Recent advances in location-acquisition techniques
have generated massive spatial trajectory data. Re-
current Neural Networks (RNNs) are modern tools
for modeling such trajectory data. After revisiting
RNN-based methods for trajectory modeling, we
expose two common critical drawbacks in the ex-
isting uses. First, RNNs are discrete-time models
that only update the hidden states upon the arrival
of new observations, which makes them an awk-
ward fit for learning real-world trajectories with
continuous-time dynamics. Second, real-world tra-
jectories are never perfectly accurate due to unex-
pected sensor noise. Most RNN-based approaches
are deterministic and thereby vulnerable to such
noise. To tackle these challenges, we devise a novel
method entitled TrajODE for more natural mod-
eling of trajectories. It combines the continuous-
time characteristic of Neural Ordinary Differential
Equations (ODE) with the robustness of stochastic
latent spaces. Extensive experiments on the task of
trajectory classification demonstrate the superiority
of our framework against the RNN counterparts.

1 Introduction
A spatial trajectory is a sequence derived from a moving ob-
ject in geographical spaces, formulated by a series of chrono-
logically ordered points, i.e., T = p1 → p2 → · · · → pn.
Each entry pi = (ai, bi, ti) contains a set of geospatial co-
ordinates (i.e., longitude ai and latitude bi) and a timestamp
ti ∈ R+. Modeling such trajectories allows us to analytically
understand the moving objects and locations, facilitating a
broad range of applications in smart transportation [Ruan et
al., 2020] and trip recommendation [Zhu et al., 2017].

Recurrent Neural Networks (RNNs) are the modern tools
for modeling spatial trajectories [Wu et al., 2017]. They are
powerful in learning sequences with variable lengths and sig-
nificantly reduce human effort in trajectory feature engineer-
ing, compared to traditional models such as SVMs and Ran-
dom Forests [Zheng et al., 2008b]. Standard RNNs assume
regular time intervals, while most trajectories are irregularly-
sampled due to many reasons like communication loads, bat-
tery issues, and weather conditions [Zheng, 2015]. To tackle

a1

a2

a3

a4
a5

b1
b2

b3

b4 b5

b6
b7(a) Irregularity in a trajectory (b) Noise points in a trajectory

p1

p3

p2

p4

p5

p5

p6

p4
p7

p8

p9

p10

(a) Irregularity in a trajectory (b) Noise points in a trajectory

p1

p3

p2

p4

p1
p2

p3

p5

p6

p7 p8

p4

(a) Irregularity (b) Data noises

p1

p3

p2

p4

p1
p2

p3

p5

p6

p7 p8

p4

(a) Uncertainty (b) Data noise

Figure 1: Illustration of uncertainty and data noise.

this irregularity, a simple trick is to concatenate the time in-
terval information to the input of RNNs [Liu and Lee, 2017;
Qin et al., 2019]. As an alternative, GRU-D [Che et al., 2018]
used an exponential decay mechanism on the hidden state un-
til the next observation is made. Moreover, [Zhu et al., 2017;
Che et al., 2018; Liu et al., 2019] enhanced RNNs with tem-
poral gating mechanisms, where the time interval information
is used to control the confidence of the input state.

Though RNNs with the aforementioned heuristics can ad-
dress the irregularity to some extent, they are still insufficient
for modeling real-world trajectories. That is because the time
interval between irregular samples in real data can be tens of
seconds or even several minutes (e.g., see Figure 6 for the in-
terval distributions in two datasets). A larger interval induces
larger uncertainty between observations, especially for high-
speed moving objects. For example, as shown in Figure 1(a),
the GPS coordinates of a car are recorded every few minutes,
leading to multiple possible paths between two consecutive
points (e.g., between p2 and p3). Since the existing RNN ap-
proaches can only update their states upon the occurrence of a
new point, they cannot adequately model such uncertainty, re-
sulting in degenerated performances. To better match reality,
we need a method that can inherently consider the underlying
continuous-time dynamics of the trajectories.

Moreover, trajectory data are never perfectly accurate due
to atmospheric conditions and signal blockage [Zheng, 2015].
Figure 1(b) shows a trajectory with noise. Sometimes, these
errors significantly impact model accuracy. Most of the RNN
models for trajectory modeling are deterministic and infeasi-
ble to defeat such noise. An intuitive idea is to perform noise
filtering [Zheng, 2015] before training our models. However,
it requires extra human efforts to carefully specify the dis-
tance threshold and may significantly reduce the number of
points in trajectories. Therefore, how to enhance the model
robustness against data noise remains a challenge.
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Figure 2: Evolution of the hidden state in a trajectory, where col-
ored horizontal lines denote different dimensions of the hidden state.
(a) The hidden state of Standard RNNs only updates at new obser-
vations. (b) In Neural ODEs, the state obeys an ODE all the time,
but is only determined by the initial state. (c) ST-ODE follows the
paradigm of ODE-RNN [Rubanova et al., 2019], having continuous
states which obey an ODE between successive points and can be
updated at observations. Compared to the RNN update function in
ODE-RNN, we design a spatio-temporal gating mechanism to renew
the states based on the time interval ∆ti and geospatial distance di
between observations due to the unique trajectory characteristics.

To address these issues, we present a novel model based
on Neural Ordinary Differential Equations (ODE) for model-
ing trajectory data, entitled TrajODE. Targeting the first chal-
lenge, we devise a Spatio-Temporal ODE (ST-ODE) to model
the continuous-time dynamics of a trajectory. As depicted
in Figure 2(c), ST-ODE possesses continuous hidden states
which obey an ODE between successive observations. Once a
new point occurs, the state will be updated by a gating mech-
anism, which jointly considers the new input and the spatio-
temporal interval since the last observation. To overcome the
second challenge, we integrate ST-ODE with latent variables
to enhance its robustness, where the whole model is trained
with noise injected in its stochastic hidden layers, with a regu-
larizer encouraging this noise injection. Furthermore, Contin-
uous Normalizing Flows (CNF) [Chen et al., 2018] are incor-
porated to achieve a more unbiased posterior approximation.
Compared to discrete layers in normalizing flows [Rezende
and Mohamed, 2015], CNF uses instantaneous transforma-
tions to avoid expensive determinant computation by solving
ODEs. In summary, our contributions are three-fold:
• To the best of our knowledge, we are the first to present an

ODE-based approach (called ST-ODE) for modeling spa-
tial trajectories, capturing the continuous-time dynamics in
a principle way compared to RNN counterparts.

• Leveraging recent advances in deep variational models, we
devise a novel framework entitled TrajODE for robust tra-
jectory modeling by enhancing the proposed ST-ODE with
latent variables, strengthening the robustness of our model
against data noise by variational inference.

• We evaluate our approach on the trajectory classification
task using two real-world mobility datasets. Compared to
the state-of-the-art RNN approach, the results demonstrate
that our model can improve the accuracy by 14% ∼ 21%.

2 Related Work
2.1 Trajectory Modeling
There has been a long line of studies in modeling trajectory
data. [Zheng et al., 2008b] first applied several traditional
algorithms (e.g., decision tree) to identify the transportation
modes of a user’s trajectory. They further identified a set of

sophisticated features such as stop rate and velocity change
to increase the classification accuracy [Zheng et al., 2008a].
Recently, RNNs have shown promising results in modeling
trajectory data. In a pioneering study [Wu et al., 2017], the
authors presented the first attempt to model trajectories by
RNNs. Following this work, [Liu and Lee, 2017] employed
bidirectional RNNs to recognize the transportation modes of
GPS trajectories. To address the irregularity of trajectories,
[Zhu et al., 2017; Che et al., 2018] extended RNNs to con-
sider the time intervals between two consecutive points. [Liu
et al., 2019] utilized 1D-CNN to model short-term spatial
correlations between consecutive points, along with a time
gating mechanism for learning spatio-temporal correlations.
However, none of them can accurately model the continuous-
time dynamics of a trajectory.

2.2 Neural Ordinary Differential Equations
Neural ODEs are a new family of deep learning models [Chen
et al., 2018], which can be interpreted as a continuous equiv-
alent of ResNet [He et al., 2016]. Recall that a residual layer
updates the hidden state at time i by using a transformation
f over the previous state, denoted as hi = hi−1 + f(hi−1).
In contrast to this discrete update, Neural ODEs parameterize
the derivative of the hidden state using a neural network fψ:

dh(i)

di
= fψ(h(i), i) where h (i) = hi, (1)

where ψ is the parameter set of f . In this way, the hidden state
at any time τ can be evaluated via a blackbox ODE solver:
h(τ) = h(0) +

∫ τ
0
fψ(h(t), t)dt. We can simpify it as

h0 . . .hn = ODESolve (fψ,h0, (t0, . . . , tn)) , (2)
where ODESolve is a numerical ODE solver, such as the Eu-
ler Method. Taking advantage of such models, ODE-RNNs
[Rubanova et al., 2019], GRU-ODE-Bayes [De Brouwer et
al., 2019] and ODE-LSTMs [Lechner and Hasani, 2020] en-
hanced RNNs to model irregularly-sampled time series. In-
spired by these insightful studies, we present the first attempt
to model spatial trajectories with Neural ODEs.

2.3 Deep Latent Variable Models
Deep latent variable models combine the approximation abil-
ities of neural networks and the statistical foundations of gen-
erative models. Typically, Variational Autoencoders (VAEs)
[Kingma and Welling, 2013] model the data distribution p(x)
with the help of an unobserved latent variable z as a directed
graphical model, i.e. p(x) =

∫
p(x|z)p(z)dz. As the in-

tegral is usually intractable, VAE implicitly optimizes the
log-likelihood of the data by maximizing the evidence lower
bound. A series of studies combined RNNs with VAEs for
robust sequence modeling [Xu et al., 2017; Xu et al., 2018;
Zhou et al., 2020]. Besides, [Rezende and Mohamed, 2015]
developed Normalizing Flows (NF) for learning highly non-
Gaussian posterior densities by stacking a series of invertible
transformations as zK = gK ◦ gK−1 ◦ · · · ◦ g1(z0), where
each g is a bijective function. [Chen et al., 2018] further de-
vised a continuous version of NF to reduce the computation
cost by solving ODEs. Motivated by these previous studies,
we equip our ST-ODE with latent variables to improve its ro-
bustness under the attack of GPS noise.
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3 Methodology
Given a trajectory T = p1 → p2 → · · · → pn, our task is to
identify the mode of the whole trajectory. Figure 3 presents
the framework of TrajODE for solving this problem, which
consists of three major components:
• Encoder: We first perform feature extraction to obtain the

features of each point (denoted as xi), and subsequently de-
vise ST-ODE to learn high-level representations by model-
ing the continuous-time dynamics of the trajectory. Lastly,
a fully-connected layer is used to transform the hidden state
hi at each point to an output state oi, where i = 1, 2 . . . n.

• Posterior Approximation: This module starts with generat-
ing an initial latent variable z0 from the encoder output on.
The approximated posterior is denoted as qφ (z0|x1 . . .xn),
where φ is the parameter set of q. Afterwards, we leverage a
continuous normalizing flow to convert z0 to zK that obeys
a more accurate non-Gaussian posterior distribution.

• Decoder: As TrajODE belongs to the variational family, we
need to jointly maximize the evidence low bound (ELBO)
and minimize the classification loss. There are two differ-
ent decoders in this component, one to exploit ST-ODE to
reconstruct the inputs x1 . . .xn from zK , and the other to
perform classification with a multi-layer perceptron (MLP).
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Figure 3: Framework of our proposed TrajODE.

3.1 Feature Extraction
One of the main advantages of RNNs is that they can miti-
gate heavy feature engineering [Liu et al., 2019]. They di-
rectly feed the geospatial coordinates (ai, bi) and timestamp
ti into each RNN unit to learn high-level representations. In
this study, we propose to extract several simple yet useful fea-
tures to boost the model performance. We attach the attributes
of each segment to its termination point. As shown in Figure
4, we first compute the time interval ∆ti = ti − ti−1 and the
geospatial distance di between two consecutive points pi−1

and pi. As the speed and acceleration of a moving object
can determine the transportation modes, we approximate the
velocity of each segment by vi = di/∆ti and compute the
acceleration using ri = |vi−vi−1|/∆ti. Finally, we concate-
nate them with the geospatial coordinates as the feature of
the i-th point xi = [ai, bi, vi, ri] ∈ R4. The spatio-temporal
interval (∆ti, di) will also be used in the following section.

3.2 Spatio-Temporal ODE
When applying Neural ODEs to modeling GPS trajectories, a
major issue is that the solution to an uncontrolled ODE is only
determined by its initial condition, and we cannot adjust the
hidden states based on subsequent observations. To this end,
ODE-RNNs provide a new paradigm for learning irregularly-
sampled data. The main idea is to employ a black-box ODE
solver to evaluate the hidden state between successive records
and a standard RNN cell to update its state at observations:

h′i = ODESolve (fψ,hi−1, (ti−1, ti)) , (3)

hi = RNNCell(xi,h
′
i), (4)

where h′i ∈ Rm is the solution at ti to an ODE started from
ti−1; hi ∈ Rm is the updated hidden state.

However, we notice that the time lapse between successive
GPS points can vary from seconds to minutes in trajectories,
e.g., in GeoLife dataset [Zheng et al., 2010]. As the time in-
terval increases, it will be more difficult for the ODE solver to
evaluate the continuous hidden dynamics (Eq. 3), which im-
plies that we should believe more in the current observation.
Similarly, the spatial interval (i.e., distance) between consec-
utive points also affects the confidence of the ODE states. Ac-
cording to Eq. 4, ODE-RNN leverages a simple shared RNN
cell to update the hidden state at any time step, making it fail
to capture the impact of various spatio-temporal intervals.

Based on the above findings, we present an ST-ODE model
to learn the continuous-time dynamics while considering such
spatio-temporal interval information by a gating mechanism.
The procedures are illustrated in Algorithm 1. First, we fol-
low [Lechner and Hasani, 2020] to employ an LSTM before
performing the ODE solver to avoid the vanishing or explod-
ing of gradients (line 3), where the soft embedding achieved
by LSTM at ti is denoted as ei ∈ Rm. Then, we obtain the
ODE state at each time step by solving ODEs in line 4. Given
the ODE state h′i and the current embedding ei, we update hi
using the proposed gating mechanism (line 5):

hi = ui � h′i + (1− ui)� ei, (5)

where the spatio-temporal (ST) gate ui ∈ Rm is a function
w.r.t. the ST interval (∆ti and di), which helps the model to
determine how much of the state solved by ODE needs to be
passed along to the future. Instead of using a fixed priori like
e−(∆ti+λdi) [Liang et al., 2017], we parameterize it to be

ui = exp (−max (0,Wu[∆ti, di] + bu)) , (6)

where Wu ∈ R2×m and bu ∈ Rm are learnable parameters.
Such computation ensures each decay rate monotonically de-
creases in a reasonable range between 0 and 1. Finally, we
compute the output states {o1 . . .on} via a fully-connected
layer (line 6) for downstream applications, where oi ∈ Rm.
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Figure 4: GPS log, segment and feature extraction.
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Algorithm 1: The ST-ODE model
Input: {(xi, ti,∆ti, di)}i=1...n

Output: The output state {oi}i=1...n

1 h0 = c0 = 0 . Initialize hidden state and memory cell.
2 for i = 1 . . . n do
3 (ei, ci) = LSTMCell(xi, (hi−1, ci−1))
4 h′i = ODESolve (fψ,hi−1, (ti−1, ti))
5 hi = ST-Gate(ei,h

′
i,∆ti, di)

6 oi = Wohi + bo where Wo ∈ Rm×m,bo ∈ Rm
7 end

(a) Small time interval

t1 t2 t1 t3

Observation

(b) Large time interval

Ground Truth

ODESolve ODESolve

Ground Truth

Figure 5: Ground truth vs. ODE curves of hidden states in different
sizes of time interval. Note that the observations do not perfectly
match the underlying ground truth because of data noise.

To help better understand how ST-ODE works, Figure 5 de-
picts an example of the ground truth (red line) and the ODE
curves (blue line) of hidden states in ST-ODE. When the time
interval is small (between t1 and t2), the error of hidden state
(the margin between the two lines) is acceptable, thereby al-
lowing more parts of the ODE state passing through the gate.
On the contrary, when the time interval is very large (from t1
to t3), we should believe more in the new observation rather
than the ODE state at t3. The sample principle holds true if it
extends to cases with different spatial intervals.

3.3 Posterior Approximation
Different from the deterministic RNNs for classification, our
TrajODE approximates the complex posterior distribution of
the latent variables z to enhance its robustness. Let pθ(z0|X)
be the true posterior distribution, where X = {x1 . . .xn} is
the point features. We follow VAEs to approximate pθ(z0|X)
with qφ(z0|X) using a neural network model, where φ is the
parameter set of q. We first derive the mean µ ∈ Rm and
variance σ ∈ Rm of latent variable z0 from the output of
ST-ODE (on) using linear transformations. Going along with
the reparameterization trick [Kingma and Welling, 2013], we
sample the latent variable z0 from qφ(z0|X) by z0 = µ+σε,
where ε ∼ N (0,1) and zo ∈ Rm.

However, the estimated posterior qφ(z0|X) in vanilla VAE
is restricted to obey a normal distribution, which makes it
hard to reflect the real characteristics of trajectory data. A nat-
ural idea is using normalizing flows (NF) [Rezende and Mo-
hamed, 2015], where a series of invertible mappings g1 . . . gK
are performed to convert the initial known distribution to a
more complicated one. Given the initial latent variable z0,
the probability of the output variable zK = gK ◦ gK−1 ◦ · · · ◦
g1(z0) is given by the change of variable theorem:

log p(zK) = log p(z0)−
K∑
k=1

log

∣∣∣∣det
∂gk
∂zk

∣∣∣∣ , (7)

where z0 can be computed from zK using the inverse flow
z0 = g−1

1 ◦ g−1
2 ◦ · · · ◦ g−1

K (zK). However, it requires cubic
cost in computing the determinant of the Jacobian ∂gk/∂zk.

Inspired by recent advances in Neural ODEs, we introduce
a continuous normalizing flow (CNF) [Chen et al., 2018] to
enable our model approximate more accurate posterior dis-
tribution (thereby more robust against noise), while avoiding
the cubic cost in the determinant computation. In contrast to
discrete transformations in NF, we define each mapping as a
continuous-time dynamic: dz(k)

dk = gω(z(k), k), i.e., a dif-
ferential equation gω that can be parameterized by a neural
network. Based on the theorem of instantaneous change of
variables [Chen et al., 2018], the change in the log probabil-
ity also follows a differential equation:

d log qφ (zk|X)

dk
= − tr

(
∂gω
∂zk

)
, (8)

where tr represents the trace operation, reducing the cubic
cost to a linear cost with regard to the number of hidden units.
By using Eq. 8, the latent variable after a time period with
length K can be computed as zK = z0 +

∫K
0
gω (zk, k) dk,

while its log distribution can be written as:

log qφ (zK |X) = log qφ (z0|X)−
∫ K

0

tr

(
∂gω
∂zk

)
, (9)

In this way, we can learn a more accurate non-Gaussian pos-
terior qφ(zK |X) compared to the original one, i.e., qφ(z0|X).
As this procedure is continuous, we set K = 1 for simplicity.

3.4 Decoders & Optimization
After posterior approximation, we apply a 2-layer MLP with
64 hidden units as classifier to generate the prediction ŷ from
the latent variable zK . Then, another ST-ODE is used as the
decoder to reversely reconstruct the raw trajectory from the
latent variable zK , which measures the reconstruction likeli-
hood Eqφ log [pθ (X|zK)] based on the variational posterior
distribution. Here, we do not treat the reconstruction task as
an initial-value problem since directly using Neural ODEs for
reconstruction performs badly in our experiments.

When performing back-propagation, computing the gradi-
ents of Neural ODEs is memory prohibitive as the states are
infinitely many over time. We address this issue with the ad-
joint sensitivity method [Chen et al., 2018], which results in
only O(1) memory cost. Let Ω be the learnable parameters,
we train our model by jointly minimizing two loss functions:

L(Ω) = LCE(ŷ,y)− γLELBO(θ, φ), (10)
where LCE denotes the cross-entropy loss between the pre-
diction ŷ and ground truth y; the second term LELBO means
the evidence lower bound, which is computed as;

LELBO(θ, φ) = Eqφ log [pθ (X|zK)] + Eqφ log [pθ (zK)]

− Eqφ [qφ (z0|X)] +

∫ K

0

tr

(
∂gω
∂zk

)
,

where the first term is the reconstruction likelihood; the last
three terms represent the KL Divergence of the prior distribu-
tion and the variational posterior distribution.
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4 Experiments
4.1 Datasets
We conduct our experiments over two public datasets:
• GeoLife [Zheng et al., 2010]: GeoLife contains 17,621 tra-

jectories collected by 182 users from a peroid of five years
(from 2007 to 2012). Among them, 73 users have labeled
part of their trajectories with transportation modes. Fol-
lowing [Liu et al., 2019], our target is to identify the travel
modes (i.e, walking, bike, bus and car) of a trajectory.

• Grab-Posisi [Huang et al., 2019]: This dataset is sampled
from Grab1 drivers’ trajectories in Singapore and Jakarta.
The data in Jakarta provide two transportation modes (car
or motorcycle). We choose the data ranging from 2019-04-
10 to 2019-04-13 for the binary classification task.

After preprocessing, we obtain 15,639 and 119,551 instances
ranging from 5 to 30 minutes from the two datasets, respec-
tively. Each of them possesses 20 to 100 GPS points. Figure
1 illustrates the distribution of time intervals in these datasets.
The time interval in Grab-Posisi is generally larger than that
in GeoLife, which aggravates the irregularity and thereby in-
creases the difficulty of modeling. For both datasets, we par-
tition the data into training, validation and test data by a ratio
of 8:1:1. Z-score normalization is performed on inputs for
fast training. See more details in our Data Appendix.
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Figure 6: Distribution of time intervals of the two datasets.

4.2 Experimental Settings
Baselines
We consider nine baselines that belong to three classes:
• Traditional models: We follow [Zheng et al., 2008b] to

implement SVM and Random Forest (RF) for comparison.
The classification is based on the extracted metadata, e.g.,
the mean/variance of velocity and acceleration.

• RNN approaches: We take the RNN models introduced
in Section 2.1 as RNN baselines, including RNN, BiLSTM
[Liu and Lee, 2017], TimeLSTM [Zhu et al., 2017], GRU-
D [Che et al., 2018], and STGRU [Liu et al., 2019].

• Neural ODEs: LatentODE [Rubanova et al., 2019] and
ODE-LSTM [Lechner and Hasani, 2020] are variants of
ODE-RNN for modeling irregularly-sampled time series,
which can be easily adapted to our classification task.

For RNN and ODE-RNN based models, we sequentially feed
each GPS point pi = (ai, bi, ti) into the corresponding RNN
unit for learning representations. To be fair, we also employ
a subnetwork to fuse the metadata at the top of these models
to increase their classification accuracy.

1Grab is a ride-sharing company based in Singapore.

Implementation Details & Hyperparameters
We implement TrajODE and the baselines with PyTorch 1.7.
Our model is trained by an Adam optimizer with an initial
learning rate of 0.01, reduced by 1/10 every 20 epochs. The
batch size is 128 and 512 over the two datasets, respectively.
For simplicity, we use the same hidden dimensionality at the
encoder and decoder, and conduct a grid search for m from
16 to 512. The ODE solvers in both ST-ODE and CNF are
the Euler Method, where the evaluation functions are 3-layer
MLPs with m hidden units in each layer. The trade-off pa-
rameter (γ) in Eq. 10 is set as 5e − 4. As the observation
times are different for each trajectory in a batch, we solve all
ODEs in a batch by computing the solution of the combined
ODE at the union of all timestamps in the batch.

Evaluation Metrics
We follow [Zheng et al., 2008b; Liu et al., 2019] to employ
the classification accuracy (Acc) to evaluate model perfor-
mance. For each dataset, we run each method 5 times and re-
port the mean accuracy of each model. We also use the nota-
tion ∆ to indicate the relative improvement of accuracy com-
pared with the state-of-the-art RNN method, i.e., STGRU.

4.3 Model Comparison
In this section, we compare our model with the baselines over
the two datasets. We present the best performance of each
method under different hyperparameter settings in Table 1.
For example, we report the results of TrajODE with m = 64
as our default settings on both datasets.

It can be seen easily that our TrajODE clearly outperforms
all the baselines over both datasets. Compared to the state-of-
the-art RNN method (STGRU), TrajODE improves the accu-
racy by 20.9% and 13.6% on the two datasets, respectively.
The reasons are two-fold. First, TrajODE captures the uncer-
tainty between observations via a continuous-time approach,
resulting in more accurate and natural modeling of trajec-
tories. Second, TrajODE takes advantage of the variational
inference to be less vulnerable to the attack of data noise.
From this table, we can also observe that: 1) Directly us-
ing Neural ODEs like ODE-LSTM cannot bring significant
improvements against RNNs, since they are originally de-

Method GeoLife Grab-Posisi
Acc ∆ Acc ∆

SVM 0.526 -22.0% 0.552 -21.8%
RF 0.592 -12.2% 0.562 -20.4%
RNN 0.614 -8.9% 0.618 -12.5%
BiLSTM 0.629 -6.7% 0.704 -0.3%
TimeLSTM 0.638 -5.3% 0.690 -2.3%
GRU-D 0.625 -7.3% 0.688 -2.6%
STGRU 0.674 - 0.706 -
LatentODE 0.715 +6.1% 0.733 +3.8%
ODE-LSTM 0.645 -4.3% 0.698 -1.1%
TrajODE 0.815 +20.9% 0.802 +13.6%

Table 1: Model comparison. TrajODE significantly outperforms all
competing baselines with regard to the classification accuracy (Acc)
over both datasets according to the Student’s t-test at level 0.01.
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signed for irregularly-sampled time series which are not the
case for GPS trajectories (containing both spatial and tempo-
ral intervals). 2) In contrast to GeoLife, the performances of
RNN variants are not very distinctive in Grab-Posisi due to its
larger time intervals (see Figure 6). 3) Stochastic approaches
(i.e., TrajODE and LatentODE) achieve better performance
than those deterministic models, which demonstrates the ro-
bustness provided by the stochastic latent space.

4.4 Variant Comparison
To further investigate the effectiveness of each model compo-
nent, we compare TrajODE with its variants as follows:
• TrajODE-RNN: This variant employs RNNs as the en-

coder and decoder rather than using ST-ODEs.
• TrajODE-ODE-RNN: We replace ST-ODEs with ODE-

RNNs for encoding and decoding the trajectories.
• TrajODE-w/o PA: We remove the posterior approximation

from TrajODE to validate its efficacy, i.e., we only use ST-
ODE as a deterministic method for trajectory classification.

• TrajODE-w/o CNF: To evaluate the CNF for learning non-
Gaussian posterior distribution, we directly turn it off.

Evaluation on Feature Extraction
We first check if the features that we feed into TrajODE are
really useful. As shown in Table 2, we add locations (Fl), ap-
proximated velocity (Fv) and acceleration (Fr) step by step.
Although these features look simple, we see a clear improve-
ment in the model accuracy while not increasing the model
complexity. In particular, we also follow [Liu and Lee, 2017]
to concatenate the locations with the time interval informa-
tion for comparison (denoted by Fl+t). The results show in-
tegrating with velocity and acceleration contributes more to
the classification task than the time interval information.

Features Fl Fl+v Fl+r Fl+v+r Fl+t
GeoLife 0.791 0.806 0.799 0.815 0.795
Grab-Posisi 0.776 0.796 0.788 0.802 0.782

Table 2: Accuracy of TrajODE with different features.

Evaluation on ST-ODE
As the major building block of our model, ST-ODE enables us
to model the continuous-time dynamics of trajectories. Here,
we attempt STGRU and the variants of TrajODE with differ-
ent hidden dimensionality (m) to verify the efficacy of ST-
ODE. Figure 7 shows the comparison results, from which we
can have the following observations. First, TrajODE consis-
tently outperforms both variants over all hidden state sizes
by jointly capturing the continuous-time dynamics and the
spatio-temporal intervals between observations. For example,
the improvement of TrajODE over TrajODE-ODE-RNN can
verify the efficacy of our ST gating mechanism. Second, the
performance of TrajODE and its variants are not very sensi-
tive to the hidden dimensionality in GeoLife. Third, TrajODE
with m = 64 achieves the best performance in both datasets.
As m exceeds 128, it will induce much more trainable pa-
rameters and lead to an overfitting problem. Thus, we choose
m = 64 as the default setting of our model.
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Figure 7: Accuracy vs. hidden dimensionality.

Evaluation on Posterior Approximation
As this component is employed to enhance the model robust-
ness against data noise, we thereby evaluate it under different
noise levels. We use a normal distributionN (0, λ2) to gener-
ate an offset for each GPS point, where λ is the standard devi-
ation (in meters) and can be interpreted as the noise level. As
shown in Figure 8, the accuracy of each model decreases with
the increase of λ over both datasets. TrajODE achieves much
higher accuracy in all levels of noise compared to the deter-
ministic model (TrajODE-w/o PA), which reveals the supe-
riority of integrating with stochastic latent space. Moreover,
TrajODE outperforms its variant w/o CNF by a considerable
margin because CNF allows the latent variables zK obeying
a more complex posterior distribution.
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Figure 8: Robustness test on different noise levels.

5 Conclusion and Future Work
In this paper, we devise a continuous-time model called Tra-
jODE with latent variables for modeling spatial trajectories.
It possesses continuous states between observations, and also
updates the hidden state by new observations while consider-
ing the spatio-temporal intervals. Meanwhile, the latent vari-
able space enhances the model robustness against the data
noise. Compared to the state-of-the-art RNNs, TrajODE im-
proves the classification accuracy by approximately 14% to
21% on two real-world mobility datasets. However, we have
noticed that the major efficiency bottleneck is the evaluation
between two observations. In the future, we plan to reduce
the number of function evaluations in the ODE solver while
preserving the model accuracy, and explore TrajODE on other
downstream applications, such as trajectory prediction.
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