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Background：Modular Vision-Language Models

Multi-modality
bridging

Modular
VLMs

Language Model

· Projector
· Vocabulary

Vision Module

Modular VLMs

 Dense Visual Encoder
Well pre-alignment across modules.
Minimal resource costs for adaptation.
Strong visual pre-training inductive biases
Complex infrastructure development and

scaling analyses of separate components.

 Discrete Visual Tokenizer
Efficiently model the unified VLMs.
Naturally compatible with multiple modalities.
Discretization results in lossy visual features.
Perform poorly in fine-grained visual perception.
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Thinking:
• Can we remove vision priors 

from existing VLMs?
• How to transfer an LLM to a 

native VLM efficiently?
• How to bridge the gap between 

native and modular VLMs?
• How about mutual synergy on 

understanding and generation 
capabilities of existing VLMs ?

(ii) Differentiating

(i)
Aligning

(iii)
Reasoning

Modular VLMs

Language Model

Background：Native Vision-Language Models



4

Outline：Native Vision-Language Models

RealUnify: Do Unified Models Truly Benefit from Unification?
Dual-Evaluation Protocol, Understanding-Generation Synergy

Native Multimodal Evaluation

From Pixels to Words: Towards Native Vision-Language Primitives at Scale
Native Vision-Language Primitive, Holistic Vision-Language Buffer

Native Multimodal Architecture

Visual Jigsaw Post-Training Improves MLLMs
Self-supervised Learning, Post-training, Reinforcement Learning

Native Multimodal Post-Training
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From Pixels to Words: Towards Native Vision-Language Primitives at Scale
Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu 



Motivation
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Question：

 What fundamental constraints set native VLMs apart from modular 
ones, and to what extent can these barriers be overcome?

 How to make research in native VLMs more accessible and 
democratized, thereby accelerating progress in the field.

These issues prompts us to think about  what a native primitive 
should look like and what characteristics it should have?



Motivation
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From first principles, one native VLM primitive should ：

 effectively align pixel and word representations within a shared 
semantic space; 

 seamlessly integrate the strengths of formerly separate vision and 
language modules; 

 inherently embody various cross-modal properties that support 
unified vision-language encoding, aligning, and reasoning



Motivation
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x L
Build native VLMs from first principles ! ! !



Motivation
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x L

Build native VLMs by leveraging the strengths of existing VLM designs ! ! !



Methodology
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(1). Introduce new FC/Norm into original Q, K for H, W



Methodology
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 Native Rotary Position Embeddings (Native-RoPE) eliminates index correlations and decouples channel allocation between H / W and T;

 Native-RoPE with modality-specific frequencies captures local dependencies across H / W / T and long-range relations across T; 



Methodology
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 Native Multi-Modal Attention captures rich spatial correspondence within images and contextual vision-language dependencies.

(3). Introduce Frame-wise Native Multi-Modal Attention



Methodology
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 Modality-shared pre-Buffer maps 
vision and language into a unified 
representation space.

Reusable for extensible ecosystem

 Post-LLM absorbs strong language 
proficiency and powerful reasoning 
capabilities of pre-trained LLMs.

(-) Model Architecture

(-) Training Recipe
 End-to-End Training Procedure

 Quite Efficient with Limited Data

With 390M image-text samples, NEO 
efficiently develops visual perception 
from scratch while mitigating vision-
language conflicts inside one model.



Main Results
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(-) Evaluation Results on General Understanding



Main Results
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-- With quite limited pre-training and   

supervised fine-tuning data and 

-- Without reinforcement learning (RL)

 Approaches the performance of top-tier 
modular VLMs, e.g., Qwen2 / 2.5-VL, 
InternVL2.5 / 3.

 Delivers substantial gains on diverse 
visual-centric benchmarks over the best 
competitors, from EVE series to SAIL.



Ablation Studies
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Here 8-12 primitive layers for pre-Buffer

is a good trade-off for pre-alignment.



Ablation Studies
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 Modality-specific RoPE frequency does count !
 RoPE indexes allocation for H, W, T does count !
 Mixed Multi-Modality Attention Mechanism does count !



Ablation Studies
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PB 1–3 denotes the Pre-Buffer after stage 1–3.

PB3 shows only an average gap of 2.5 / 2.4 / 1.7 / 3.7% 
over NEO / InternViT / CLIP / SigLIP, reducing training 
costs of building native VLMs for subsequent research.
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Visual Jigsaw Post-Training Improves MLLMs
Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu



Motivation

RL-based Post-training for MLLMs
 Text-centric reasoning on math/science/coding problems 
 Specific vision tasks (grounding, detection, segmentation, counting)
 Tool-using (thinking with images)
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Most works focused on enhancing text-centric 
reasoning where visual inputs work only as context

[1] Tan, Huajie, et al. "Reason-rft: Reinforcement fine-tuning for visual reasoning." arXiv preprint arXiv:2503.20752 (2025).



Motivation

How to improve intrinsic vision-centric capabilities of MLLMs?
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How do we learn good vision representation?

 Methods like ROSS [1] shows dense image reconstruction helps understanding, but requiring additional 
vision generation modules and designs. Do we need dense pixel-level reconstruction?

 Unified Multimodal Models (UMMs) only shows understanding benefits visual generation

Self-supervised learning!

Other pretext tasks like rotation 
prediction and jigsaw-style tasks

Easier version of reconstruction
Suitable for MLLMs
(compatible with text-output MLLM)

[1] Wang, Haochen, et al. "Reconstructive visual instruction tuning." arXiv preprint arXiv:2410.09575 (2024).

[2] Uelwer, Tobias, et al. "A survey on self-supervised representation learning." arXiv preprint arXiv:2308.11455 (2023).

Reconstruction-based methods Discriminative/contrastive methods



Visual Jigsaw
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Visual Data → Partitioning → Shuffling 

Model reconstruct the data by 
predicting the indices in correct order 

Optimize using the GRPO algorithm



Image Jigsaw
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Image → 3 * 3 image patches

Mentally reconstruct the image and output the patch indices in the correct raster scan order.



Image Jigsaw
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Enhance vision-centric capabilities:
• Fine-grained perception & understanding
• Monocular spatial understanding
• Compositional visual understanding



Video Jigsaw
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Video → 6 video clips

Mentally reconstruct the video and 
output the clip indices in the 
correct chronological order.



Video Jigsaw
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 Enhances general video perception and comprehension
 Large gain on temporal-centric understanding and reasoning about temporal directionality (e.g. AoTBench)
 Improved cross-video understanding and reasoning (CVBench)



Video Jigsaw
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• Consistent improvement on stronger base model: MiMo-VL-7B-SFT-2508



3D Jigsaw
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RGB-D → 6 points
Order the points from closest to farthest relative to the camera.



3D Jigsaw
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 Largest gains on directly related task – DA-2K
 Consistent improvements on a wide range of other tasks (single-view, multi-views, egocentric video)



Ablation Studies
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 RL outperforms SFT

 The difficulty of the jigsaw tasks matters

 Apply jigsaw task training before text-centric/long CoT reasoning training

Future Works

 Different 3D jigsaw designs on base models with stronger 3D capabilities

 Different jigsaw configurations and combinations

 Other vision-centric self- and weakly-supervised tasks
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RealUnify: Do Unified Models Truly Benefit from Unification?
Yang Shi, Yuhao Dong, Yue Ding, Yuran Wang, Xuanyu Zhu, Sheng Zhou, Wenting Liu, Haochen Tian, Rundong Wang, 
Huanqian Wang, Zuyan Liu, Bohan Zeng, Ruizhe Chen, Qixun Wang, Zhuoran Zhang, Xinlong Chen, Chengzhuo Tong, Bozhou
Li, Chaoyou Fu, Qiang Liu, Haotian Wang, Wenjing Yang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang, Ziwei Liu



Specific Combine Emergent

Easy to evaluate with current benchmarks Lack of customized benchmarks

Motivation



Previous Benchmarks Customized Unified Benchmark

Direct -> Combination -> Reasoning True Unification

Motivation



Task Taxonomy
Understanding -> Generation 
(UEG)

Generation -> Understanding (GEU)



How to Evaluate

Direct -> Step-wise

Direct: Whether the model can leverage
generation & understanding synergistically

Step-Wise: Decouple generation & understanding
for better assignment



Evaluate with RealUnify

12 SOTA models evaluated 
on RealUnify:
• UEG & GEU remain 

challenging
• Step-wise is better than 

direct answer
• All models lack true 

unification

Comparison with SOTA 
specialist:
• Unify models benefit from 

understanding
• Generation may not help 

understanding currently



How Far Can We?

Comparison with Oracle Setting: 

• Current unified models can still learn from 

oracle cases -> Strong understanding leads 

to improved generation

• Both unified models and oracle settings fall 

short on GEU tasks -> Current generation 

models fall short in aiding real-world 

problem-solving.



Unified models fall short in real-world image generationError Analysis
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Summary：Native Vision-Language Models

RealUnify: Do Unified Models Truly Benefit from Unification?
Dual-Evaluation Protocol, Understanding-Generation Synergy

Native Multimodal Evaluation

From Pixels to Words: Towards Native Vision-Language Primitives at Scale
Native Vision-Language Primitive, Holistic Vision-Language Buffer

Native Multimodal Architecture

Visual Jigsaw Post-Training Improves MLLMs
Self-supervised Learning, Post-training, Reinforcement Learning

Native Multimodal Post-Training
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